Bacterial Contamination of Blood Components: Risks, Strategies, and Regulation
Joint ASH and AABB Educational Session in Transfusion Medicine

Christopher D. Hillyer, Cassandra D. Josephson, Morris A. Blajchman, Jaroslav G. Vostal, Jay S. Epstein and Jesse L. Goodman

Abstract

Bacterial contamination of transfusion products, especially platelets, is a longstanding problem that has been partially controlled through modern phlebotomy practices, refrigeration of red cells, freezing of plasma and improved materials for transfusion product collection and storage. Bacterial contamination of platelet products has been acknowledged as the most frequent infectious risk from transfusion occurring in approximately 1 of 2,000–3,000 whole-blood derived, random donor platelets, and apheresis-derived, single donor platelets. In the US, bacterial contamination is considered the second most common cause of death overall from transfusion (after clerical errors) with mortality rates ranging from 1:20,000 to 1:85,000 donor exposures. Estimates of severe morbidity and mortality range from 100 to 150 transfused individuals each year.

Concern over the magnitude and clinical relevance of this issue culminated in an open letter calling for the “blood collection community to immediately initiate a program for detecting the presence of bacteria in units of platelets.” Thereafter, the American Association of Blood Banks (AABB) proposed new standards to help mitigate transfusion of units that were contaminated with bacteria. Adopted with a final implementation date of March 1, 2004, the AABB Standard reads “The blood bank or transfusion service shall have methods to limit and detect bacterial contamination in all platelet components.”

This Joint ASH and AABB Educational Session reviews the risks, testing strategies, and regulatory approaches regarding bacterial contamination of blood components to aid in preparing practitioners of hematology and transfusion medicine in understanding the background and clinical relevance of this clinically important issue and in considering the approaches currently available for its mitigation, as well as their implementation.

In this chapter, Drs. Hillyer and Josephson review the background and significance of bacterial contamination, as well as address the definitions, conceptions and limitations of the terms risk, safe and safety. They then describe current transfusion risks including non-infectious serious hazards of transfusion, and current and emerging viral risks. In the body of the text, Dr. Blajchman reviews the prevalence of bacterial contamination in cellular blood components in detail with current references to a variety of important studies. He then describes the signs and symptoms of transfusion-associated sepsis and the sources of the bacterial contamination for cellular blood products including donor bacteremia, and contamination during whole blood collection and of the collection pack. This is followed by strategies to decrease the transfusion-associated morbidity/mortality risk of contaminated cellular blood products including improving donor skin disinfection, removal of first aliquot of donor blood, pre-transfusion detection of bacteria, reducing recipient exposure, and pathogen reduction/inactivation. In the final sections, Drs. Vostal, Epstein and Goodman describe the regulations and regulatory approaches critical to the appropriate implementation of a bacterial contamination screening and limitation program including their and/or the FDA’s input on prevention of bacterial contamination, bacterial proliferation, and detection of bacteria in transfusion products. This is followed by a discussion of sampling strategy for detection of bacteria in a transfusion product, as well as the current approval process for bacterial detection devices, trials recommended under “actual clinical use” conditions, pathogen reduction technologies, and bacterial detection and the extension of platelet storage.